Korean Biological research group in Michigan

KBM은 미시간에서 의학, 약학, 생물학 관련 연구를 수행하는 연구자들간의 시너지를 도모하는 모임 입니다.

매달 학술 세미나 및 네트워킹 세션을 진행 하고 있으며, 미시간에 계시는 모든 연구자들의 참여를 환영합니다.



KBM is first organized by a group of researchers from the University of Michigan working in various bio-related fields. Since 2020, we have been having regular seminars and network sessions through an online platform. We believe now is the right timing for expanding our group beyond the Michigan area. So if you are interested in joining the seminars and meetings, please contact us!

Contact: kbm.president@gmail.com

Dietary cellulose prevents gut inflammation by modulating lipid metabolism and gut microbiota

Abstract

A Western diet comprising high fat, high carbohydrate, and low fiber content has been suggested to contribute to an increased prevalence of colitis. To clarify the effect of dietary cellulose (an insoluble fiber) on gut homeostasis, for 3 months mice were fed a high-cellulose diet (HCD) or a low-cellulose diet (LCD) based on the AIN-93G formulation. Histologic evaluation showed cryptatrophy and goblet cell depletion in the colons of LCD-fed mice. RNA-sequencing analysis showed a higher expression of genes associated with immune system processes, especially those of chemokines and their receptors, in the colon tissues of LCD-fed mice than in those of HCD-fed mice. The HCD was protective against dextran sodium sulfate-induced colitis in mice, while LCD exacerbated gut inflammation; however, the depletion of gut microbiota by antibiotic treatment diminished both beneficial and non-beneficial effects of the HCD and LCD on colitis, respectively. A comparative analysis of the cecal contents of mice fed the HCD or the LCD showed that the LCD did not influence the diversity of gut microbiota, but it resulted in a higher and lower abundance of Oscillibacter and Akkermansia organisms, respectively. Additionally, linoleic acid, nicotinate, and nicotinamide pathways were most affected by cellulose intake, while the levels of short-chain fatty acids were comparable in HCD- and LCD-fed mice. Finally, oral administration of Akkermansia muciniphila to LCD-fed mice elevated crypt length, increased goblet cells, and ameliorated colitis.

These results suggest that dietary cellulose plays a beneficial role in maintaining gut homeostasis through the alteration of gut microbiota and metabolites.